

Mission Concept Studies for the 2020 Decadal Survey ; Origins Space Telescope

Itsuki Sakon (University of Tokyo), Origins Space Telescope (OST) STDT, OST/MISC instrument team

Origins Space Telescope STDT

Community Chairs: Margaret Meixner, STSCI, Asantha Cooray, UC Irvine

NASA Study Center:

Goddard Space Flight Center (GSFC): Ruth Carter, David Leisawitz, Johannes Staguhn, Michael Dipirro, Anel Flores, Joseph Howard, James Corsetti, Andrew Jones, James Kellog, Louis Fantano

NASA Head Quarters Program Scientists (non-voting): Kartik Sheth and Dominic Benford

Ex officio non-voting representatives: Susan **Neff** & Deborah **Padgett**, NASA Cosmic Origins Program Office; Susanne **Alato**, SNSB; Douglas **Scott**, CAS; Maryvonne **Gerin**, CNES; Itsuki **Sakon**, JAXA; Frank **Helmich**, SRON; Roland **Vavrek**, ESA; Karl **Menten**, DLR; Sean **Carey**, IPAC

Members appointed by NASA (> 90 applications):

Lee **Armu**s, NASA IPAC; Cara **Battersby**, Harvard-Smithsonian CfA; Edwin **Bergin**, University of Michigan; Matt **Bradford**, NASA JPL; Kim **Ennico-Smith**, NASA Ames; Gary **Melnick**, Harvard-Smithsonian CfA; Stefanie **Milam**, NASA GSFC; Desika **Narayanan**, University of Florida; Klaus **Pontopiddan**, STSCI; Alexandra **Pope**, University of Massachusetts; Thomas **Roellig**, NASA Ames; Karin **Sandstrom**, UC, San Diego; Kate Y. L. **Su**, University of Arizona; Joaquin **Vieira**, University of Illinois, Urbana Champaign; Edward **Wright**, UC Los Angeles; Jonas **Zmuidzinas**, Caltech

Far-IR Surveyor STDT Meeting NASA's Goddard Space Flight Center May 12 - 13, 2016

Tracing the signatures of life and the ingredients of habitable worlds

Origins will trace the trail of water from interstellar clouds, to proto-planetary disks, to Earth itself facilitating understanding of the abundance and availability of water for habitable planets.

Unveiling the Growth of Black Holes and Galaxies over Cosmic Time

Origins will reveal the coevolution of super-massive black holes and galaxies, energetic feedback, and the dynamic interstellar medium from which stars are born.

Origins will trace the metal enrichment history of the Universe, probe the first cosmic sources of dust, the earliest star formation, and the birth of galaxies.

Charting the Rise of Metals, Dust, and the First Galaxies

Characterizing Small Bodies in the Solar System

Origins Space Telescope

- 2020 Decadal
- 9.1m single aperture
- Off-Axis
- 6—1000µm (TBD)
- 4.5K
- Diffraction Limited at 20µm

OST (Off-Axis) Telescope

The STDT decided to employ Off-Axis design at the F2F Meeting on March 2017

Top 14 Killer Apps.

- The Rise of Metals
- Water Content of Planet-Forming Disks
- The First Dust
- Direct Detection of Protoplanetary Disk Masses
- Super Earth Biosignatures And Climates
- Water Transport to Terrestrial Planetary Zone
- Connection Between BH Growth and Star Formation Over Cosmic Time
- Birth of Galaxies During Cosmic Dark Ages
- Galaxy Feedback from SNe and AGN to z~3
- Thermo-Chemical History of Comets and Water Delivery to Earth
- Star Formation and Multiphase ISM at Peak of Cosmic Star Formation
- Magnetic Fields and Turbulence Role in Star Formation
- Galaxy Feedback Mechanisms at z<1
- Survey of Small Bodies in the Outer Solar System

Baseline sets of Instruments studied for OST

Instrument	Wavelength Coverage (µm)	Spectral Resolution ($\lambda/\Delta\lambda$)	FOV # Spatial Pixels	Typical Required Sensitivity	Other
Low-Res Spectrometer	35 to 500	Low-res ~ 500 High-res ~ 10 ⁴	100 per channel	10 ⁻²¹ W/m ² (spectral line)	Multi-channel
High-Res Spectrometer	50 to 500	Low-res ~ 8x10⁴ High-res ~ 5x10⁵	100	10 ⁻²¹ W/m ² (spectral line)	Photo-counting
Heterodyne Spectrometer	150 to 500	~ 107	10-100	2 mK in 0.2 km/s @1THz	Polarized, background limited
Far-Infrared Imager	35 to 500	15	100,000	1µJy–10mJy (confusion limit)	5 to 10 channels Polarimetry Spectral line filters
Mid-Infrared Imager, Spectrometer,	6 to 40	Imager ~ 15 Spectrometer > 500, 2x10 ⁴	10 ⁶	Photometric 1µJy@10µm	Coronagraph; ~ 10 ⁻⁷ @ 0.5", 10 μm
Coronagraph					Transit Spectroscopy; ~ 10ppm stability on timescales of hours and days

Instrument Science Goals and Objectives

- Provide Mid-Infrared (6-38 μm) Capabilities to Address the Following Science Goals:
 - Transit spectroscopy of exoplanets to look for biogenic compounds (#14)
 - The rise of metals (#19)
 - Water content of Planet Forming Disks (#9)
 - The first dust (#27)
 - Connection between black hole growth and star formation over cosmic time (#21)
 - Birth of galaxies during cosmic dark ages (#26)
 - Galaxy feedback from SNe and AGN to Z~3 (#18)
 - Galaxy feedback mechanisms at z<1(#5)
 - Jupiter/Saturn Analogues (#16)

Instrument Science Requirements

• Science Observable and Measurement Requirement

- Ten of the top fourteen science cases (#5, 9, 14, 15, 18, 19, 21, 22, 26, 27), for OST, plus the goal to provide a coronagraph to enable science case #16, require an instrument that covers < 40um. Of these cases, they can fall into a need for an imager (#14, 17), spectrometer R~few hundred (#14,16, 19, 21, 22, 26), spectrometer R~few thousand (#18) to R~few ten's thousand (#5, 9, 15) and transit spectrometer (#14).

Most of the science targets are point sources, with three cases (#19, 21, 22) in need of an instrument to map large areas of sky.

- Science case #9 (Water content of planet-forming disks) and #15 (Direct detection of protoplanetary disk mass) requested R>25,000 for 25-200um.

- Science case #5 (Galaxy feedback mechanisms at z<1) requested R=10,000 for 10-500um.

MIR Coronagraphy; 10^{-7} -- 10^{-8} contrast at 0.5" (~ 2λ /D at 10µm)

Transit observations; stability better than 10 PPM on timescale of hours to days

Instrument Science Requirements

	Science Case		PIAACMC Coronagraph Channel (COR)	Transit Spectroscopy Channel (TRA)
#14	 Transit spectroscopy of exoplanets to look for biogenic compounds 			Х
#19	•The rise of metals	Х		
#9	•Water content of Planet Forming Disks	Х		
#27	•The first dust	Х		
#21	•Connection between black hole growth and star formation over cosmic time	Х		
#26	•Birth of galaxies during cosmic dark ages	Х		
#18	•Galaxy feedback from SNe and AGN to Z~3	Х		
#5	•Galaxy feedback mechanisms at z<1	Х		
#6	•Jupiter/Saturn Analogues		Х	

OST MISC Instrument Requirements

Technical Parameter	Technical Requirement	Technical Parameter	Technical Requirement	
Wavelength Range (microns)	6um-38um	Photometric Accuracy	N/A	
Detector Bandwidth	Si:As : 6-28µm, Si:Sb: 20-38µm	-if available		
Angular Resolution	<0.25" at 10µm	Transit Monitoring Cadence	One measurement/10 minutes	
Spectral Resolving Power	3-300 (6-38um), >1000 (20-38um),	Moving Target Tracking	Yes, up to 1"/second	
	10000-20000 (10-38um)	Sensitivity to High Dynamic Range	N/A for MISC science	
Spectral Line Sensitivity (5 σ , 1 hr)	2x10 ⁻²² W/m-2	Targets		
Continuum Point Source	1μJy (@6um, R=100)	Polarization Capabilities	No	
Sensitivity	10µJy (@30um, R=100)	Broadband, Wide-area Mapping	Yes, if 10 sq. deg is wide angle	
Spectrometer Relative	3%, but 10 ppm $\lambda{<}10\mu\text{m}$, 50 ppm	Surface Brightness Sensitivity	N/A	
Calibration Accuracy	for λ >10 μ m for transits	Instantaneous Field of View	Not set by science	
Field of Regard (see note above)	4 pi			
Field of View	Not set by science	Coronagraphic Contrast	1e-7 at 0.5" at 10μm	
Mapping Speed	Not set by science	Other		
Calibration / Gain stability [%]	1%			

Mid-Infrared Imager, Spectrometer and Coronagraph (MISC)

- (1) Mid-Infrared Imaging and Spectroscopy Channel
 - Wide Field Imager (WFI-S; 6-16um, WFI-L; 15-38um, R=3-10, R=100-300)
 - Medium Resolution Spectrometer (MRS-S; 5-10um, MRS-M; 9.5-19um, MRS-L; 18-36um, R>1000)
 - High Resolution Spectrometer (HRS-S; 12-18um, HRS-L; 25-38um)
 Detectors; 4 2kx2k Si:As, 2 1kx1k Si:Sb, 1 2kx2k Si:Sb
 Mechanisms; 2 wave front correction systems (DM + TTM), 6 Filter Wheels
 Others; IFU for MIR-S, MIR-M and MIR-L, sharing the same FOV,
 WFI can be used as the slit viewer when doing spectroscopy
- (2) PIAACMC Coronagraph Channel (COR)
 - PIAACMC Coronagraph (COR-S; 6-16um, COR-L; 15-38um, R=3-10, R=100-300) Detectors; 1 2k x 2k Si:As and 1 1kx1k Si:Sb Mechanisms; Deformable Mirror + Tip-tilt Mirror, 4 Filter Wheels
- (3) Transit Spectroscopy Channel (TRA)

- densified pupil spectrometer (TRA-S; 5-9um, TRA-L; 15-38um, R~100 TBD) Detectors; 3 2kx2k Si:As

Mid-Infrared Imager, Spectrometer and Coronagraph (MISC)

Mid-Infrared Imager, Spectrometer, Coronagraph (MISC) Team Members

(from Science and Technology Definition Team, Ex-Officio Non-Voting Members, Internation Ex-Officio Non-Voting Members)

- -Asantha Cooray (California, Irvine)
- -Deborah Padgett (GSFC)
- -Eric Nielsen (SETI Institute)
- -Itsuki Sakon (University of Tokyo) [Instrument lead]
- -Joaquin Vieira (Illinois, Urbana Champaign)
- -Margaret Meixner (STScI)
- -Kimberly Ennico Smith (NASA/AMES) [Science lead]
- -Tom Roellig (NASA/AMES) [Instrument lead]
- -Klaus pontoppidan (STScI)

(from NASA/Ames)

- TBA

(from Laboratoire d'Astrophysique de Marseille and related Institutes)

-Denis Burgarella (LAM) -David Le Miqnant (LAM)

(from JAXA and related Institutes)

- -Keigo Enya (JAXA)
- -Olivier Guyon (Subaru Telescope/Astrobiology Center, NINS/Steward Observatory, University of Arizona)
- -Yuji Ikeda (Photocoding)
- -Taro Matsuo (Osaka University)
- -Naoshi Murakami (Hokkaido University)
- -Jun Nishikawa (NAOJ)
- -Takayuki Kotani (NAOJ)
- -Yuki Sarugaku (University of Tokyo)
- -Naofumi Fujishiro (Astro-Opt)
- And more

A Baseline design idea of OST/MISC

(http://exoplanets.astron.s.u-tokyo.ac.jp/OST/MISC/index_misc.html)

Summary of Specification (OST/MISC)

Module	Mid–If	R Imager Spectrometer Chann	Transit Channel	Coronagraph Channel	
	Imager/Low-Res Spec.	Medium-Res Spec.	High-Res Spec.	(Densified Pupil Spec.)	(PIAACMC)
	WFI-S/-L	MRS-S/-M/-L	HRS-S/-L	TRA-S/-M/-L	COR-S/-L
Bandpass (µm)	6-38	5-36	12-18, 25-38	520	6-38
Spectral Resolution	5-10 [Imager] 300 [Low-Res Spec.]	1000-1500	20,000-30,000	300	300
Full FOV	3 arcmin x 3 arcmin [Imager]	3 arcsec x 5 arcsec [with IFU]		3 arcsec x 3 arcsec	5.5 arcsec x 5.5 arcsec
Slit for Spectroscopy	Length; 3 arcmin Width; 0.26 arcsec (WFI-SG1) 0.40 arcsec (WFI-SG2) 0.65 arcsec (WFI-LG1) 1.00 arcsec (WFI-LG2) [low-resolution Spec.]	Length; 3 arcsec (MRS-S/-M/-L) Wdth; 0.33 arcsec (MRS-S) 0.55 arcsec (MRS-M) 1.0 arcsec (MRS-L) Mum of Slices; 11 (MRS-S) 9 (MRS-M), 5 (MRS-L)	Length; 1.0 arcsec (HRS-S) 2.0 arcsec (HRS-L) Width; 0.5 arcsec (HRS-S) 1.0 arcsec (HRS-L)		Length; 1 arcmin Width; 0.26 arcsec (COR-SG1) 0.40 arcsec (COR-SG2) 0.65 arcsec (COR-LG1) 1.00 arcsec (COR-LG2)
Detectors	2kx2k Si:As (30µm∕pix) [S] 2kx2k Si:Sb (18µm∕pix) [L]	2kx2k Si:As (30μm/pix) [S] 2kx2k Si:As (30um/pix) [M] 1kx1k Si:Sb (18μm/pix) [L]	2kx2k Si:As (30μm/pix) [S] 1kx1k Si:Sb (18μm/pix) [L]	2kx2k Si:As (30µm/pix) [S] 2kx2k Si:As (30µm/pix) [M] 2kx2k Si:As (30µm/pix) [L]	2kx2k Si:As (30µm∕pix) [S] 1kx1k Si:Sb (18µm∕pix) [L]
pixel scale	0.088 arcsec/pix	0.0615 arcsec/pix (MRS-S) 0.10 arcsec/pix (MRS-M) 0.15 arcsec/pix (MRS-L)	0.17 arcsec/pix [S] 0.34 arcsec/pix [L]	0.1 arcsec/pix	0.05 arcsec/pix (COR–S) 0.10 arcsec/pix (COR–L)
Specification (Sensitivity/ Stability/ Contrast)	Sensitivity [Imager]; 1-hour 5σ Continuum Sens . for a Point Source 0.027μJy@5μm, 0.16μJy@10μm, 0.26μJy@15μm, 0.37μJy@20μm, 0.55μJy@25μm, 0.63μJy@30μm, 0.7μJy@35μm Sensitivity [Low-Res Spec.]; 1-hour 5s Continuum Sens. for a Point Source (R=300) 0.6μJy@5μm, 1.3μJy@10μm, 4.0μJy@15μm, 5.0μJy@20μm, 8.8μJy@25μm, 11.2μJy@30μm, 37.5μJy@35μm	$\begin{array}{c} \textbf{Sensitivity;} \\ 1-hour 5s \ Continuum \ Sens. \\ for a \ Point \ Source \ (R~1200) \\ 3\mu Jy@7\mum, \ 10\mu Jy@15\mum, \\ 30\mu Jy@24\mum, 100\mu Jy@32\mum \\ 1-hour 5s \ Line \ Sens. \\ for a \ Point \ Source \\ 1x10^{-21} \ W/m^2 \ @7\mum, \\ 2x10^{-21} \ W/m^2 \ @15\mum, \\ 3x10^{-21} \ W/m^2 \ @224\mum, \\ 1x10^{-20} \ W/m^2 \ @32\mum \end{array}$	Sensitivity; 1-hour 5s Line Sens. for a Point Source 1x10 ⁻²¹ W/m ² @15µm, 3x10 ⁻²¹ W/m ² @30µm	Photometric stability; 1ppm on timescales of hours to days (excluding the fluctuation of detector gain)	Average contrast; 7x10 ⁻⁶ for 10% band 1x10 ⁻⁶ for 4% band in 0.88-3.6λ/D

[1] OST/MISC Coronagraph Channel

MISC Instrument Diagram or sketch (MIR PIAACMC Coronagraph Channel)

Optical Design of MISC Coronagraph Channel

[2] OST/MISC Normal Imager and Spectrometer Channel

(A-2) MISC/MIR Imager and Spectrometer Channel Instrument Block Diagram

MISC Instrument Diagram or sketch (MIR Imager and Spectrometer Channel)

Optical Design of MISC Normal Imager and Spectrometer Channel

(note.) Optical design of Medium resolution Spectrometers are not ready

Optical Design of MISC Normal Imager and Spectrometer Channel

(note.) Optical design of Medium resolution Spectrometers are not ready

Wave Front Error Control System

Optical layout of the relay optics including the DM

Wide Field Imager

Image Slicer Unit

Optical layout of the Image Slicer Unit in Medium Resolution Spectrometer

[3] OST/MISC Transit Channel

Goal of Transit spectrophotometer (from Exoplanet SWG)

Characterization of Earth-size planets around early M-type stars

- -> extremely high stability down to 1ppm
- Separation of transit signal from stellar activity
- -> higher spectral resolution

MISC Instrument Diagram or sketch

(MISC Transit Spectrometer Channel)

Expected performance achieved by densified pupil spectrometer; ~ a few 10^{-6}

Systematic noise	Value
Movement of PSF on detector intra- and inter-pixel sensitivity variation by pointing jitter	4 x 10 ⁻⁷
Movement of PSF on Field stop by pointing jitter	1 x 10 ⁻⁶
Change of PSF width on detector intra- and inter-pixel sensitivity variation by deformation of primary mirror	5 x 10 ⁻⁷
Fluctuation of detector gain	??

Optical Design of MISC Transit Spectrometer Channel

Pupil slicer/densification (colored by slice mirror)

• Size: 1350 x 950 mm (-> can be reduced by plane mirrors and lenses to 1000 x 700 mm)

Pupil slicer/densification + Spectrometer

 \bullet 5-20 μm is broken into three channels (5-8, 8-13, 13-20 μm).

-> absorption features of H2O, CH4, O3, and CO2 are NOT separated.

• Pupil slicer and collimator lens in the spectrometer are commonly used. (collimator lens will be replaced by Casegren-based mirrors.)

• R~300 is achieved over 5-20um.

Transmission gratings/grismsare required

Initial Concept of Operations (ConOps)

Operational Modes, for example:

	COR-S	COR-L	WFI-S	WFI-L	MRS-S	MRS-L	HRS-S	HRS-L	TRA-S	TRA-L
	6-16um	15-38um	6-16um	15-38um	17-26um	25-38um	12-18um	25-38um	6-16um	25-38um
Coronagraph Imaging	ON		Standby		Standby		Standby		Standby	
Coronagraph Imaging (option 1)	0	N	C	N	ON		ON	Standby	Standby	
Coronagraph Imaging (option 2)	0	N	ON Standb		ndby	Standby	ON	ON Standby		
Coronagraph Spectroscopy	0	N	Sta	ndby	Standby		Standby		Standby	
Coronagraph Spectroscopy (option 1)	0	N	С	N	ON		ON	Standby	Standby	
Coronagraph Spectroscopy (option 2)	0	N	С	N	Sta	nby	Standby	ON	Standby	
MIR imaging	Standby		ON		Standby		Standby		Standby	
MIR imaging (option 1)	Star	ndby	C	N	ON		ON	Standby	Standby	
MIR imaging (option 2)	Star	ndby	С	N	Standby		Standby	indby ON		ndby
MIR low res spectroscopy	Sta	ndby	ON		Standby		Standby		Sta	ndby
MIR low res spectroscopy (option 1)	Star	ndby	С	N	ON ON Standby		Standby	Standby		
MIR low res spectroscopy (option 2)	Star	ndby	C	N	Standby Standby		ON	Standby		
MIR med res spectroscopy	Sta	ndby	C	N	ON Standby		ndby	Standby		
MIR med res spectroscopy (option 1)	Star	ndby	C	N	0	N	ON Standby Standby		ndby	
MIR high res spectroscopy	Sta	ndby	C	N	Standby C		N	Sta	ndby	
Transit spectroscopy	Sta	ndby	Sta	ndby	Standby S		Star	Standby		N
Transit Spectroscopy (option 1)	Star	ndby	С	N	0	N	ON	Standby	C	N
Transit Spectroscopy (option 2)	Star	ndby	C	N	Star	ndby	Standby	ON	С	N

Instrument TRL's and Heritage

Description	Subsystem/ Component	TRL	Heritage
Deformable Mirror	Component	4	SPICA/SCI
Tip Tilt Mirror	Component	4	SPICA/SCI, JWST/NIRCAM
2K x 2K Si:As, 2K x 2K Si:Sb	Component	2	
PIAACMC Coronagraph	Subsystem	3	
8-Octa Phase Mask for MIR(8-36um)	Component	2	
Binary Pupil Mask Coronagraph	Component	4	SPICA/SCI
Beam Splitter, Band-pass Filters (Multi-Layer Interference Filter)	Component	4	SPICA/MCS
Image Slicer	Subsystem	4	SPICA/MCS, TMT/MICHI
Immersion grating (12-18µm)	Component	4	SPICA/MCS
Immersion grating (25-38µm)	Component	2	
Densified pupil spectrometer	Subsystem	3	