

WFIRST Coronagraphy

### Historic

- Astrodecal **2010** : recommandation **WFIRST** (Wide Field IR Survey Telescope) for *New Worlds New Horizons* 

- 1. *Expansion rate of the Universe* => wide FOV and low resolution spectroscopy
- 2. *other Solar Systems like ours* => Micro lensing
- 2012 : Science Definition Team (SDT) report

Telescope 1.3~1.1m sans obstruction, L2, 0.6-2.4 microns

- 2013 : AFTA (Astrophysics Facility Telescope Assets) received by NASA
  Telescope HST-like, D=2.4m => need to redefine the science cases
- 05/2013 : SDT Report with optional Coronagraph
- **2014** : NRC review concerns on coronagraph performance

=> milestones plan to meet TRL 5

=> lab demonstration of contrast with AFTA pupil

- **2014-2015** : European interests (chair : M. Cropper) => UK declines official commitments
- 03/2015 : SDT Report with optional Coronagraph
- 2016 : Science Investigation Teams (SITs) selected
- 06/2016 : call ESA "Opportunity for European scientists on the WFIRST Formulation Science Working Group (FSWG)" => T. Henning / A. Boccaletti
- 04/2017 : independent external technical and cost review of WFIRST

# SITs + Adjudants

- \* B. Macintosh et al. "Optimizing WFIRST Coronagraph Science"
- \* M. **Turnbull** et al. "Harnessing the power of the WFIRSTcoronagraph: a coordinated plan for exoplanet and disk science"
- \* J. Kasdin : WFIRST CGI adjudant scientist

#### CGI Working Groups :

- CGI Simulations (Bruce Macintosh, chair, Maggie Turnbull deputy chair)
- CGI Targets (Maggie Turnbull, chair, Andrew Howard, deputy chair)
- CGI Requirements Development (Kerri Cahoy, chair, Avi Mandell, deputy chair)
- CGI Data Management and Post-Processing (Laurent Pueyo, chair)

# Potential contributions (NASA suggestions)

- Filter and mask wheels: Europe could provide the wheels inside the coronagraph that hold the filters and mask.
- <u>Detectors</u>: Europe could provide the e2V CCD201 detectors for the coronagraph and IFS.
- <u>Detector calibration and radiation testing</u>: Europe could work with NASA to calibrate and perform radiation testing on the CCD detector for the coronagraph instrument.
- Star trackers: Europe could provide star trackers for the WFIRST spacecraft.
- Solar array: Europe could provide the solar array for the WFIRST spacecraft.
- <u>S-band transmitter</u>: Europe could provide the S-band transmitter for the WFIRST spacecraft.
- <u>Ground station Support</u>: Europe would provide ground station support for downlink of S-band and Ka-band data

#### Any ESA contribution would be the subject of a Mission of Opportunity Proposal and a subsequent SPC decision

# WFIRST in brief

phase A started on Feb 2016 Launch in mid 2020' 6.25 years nominal mission 1 year CGI starshade ready ... managed at GSFC participation : JPL, STScI, IPAC june 2017 : SRR, decide participation ESA Oct 2017 : start phase B

#### **Wide-Field Instrument**

- Imaging & spectroscopy over 1000s of sq. deg.
- Monitoring of SN and microlensing fields
- 0.7 2.0 μm (imaging) & 1.35-1.89 μm (spec.)
- 0.28 deg<sup>2</sup> FoV (100x JWST FoV)
- 18 H4RG detectors (288 Mpixels)
- 6 filter imaging, grism + IFU spectroscopy

#### Coronagraph

- Image and spectra of exoplanets from super-
- Images of debris disks
- 430 970 nm (imaging) & 600 970 nm (spec.)
- Final contrast of 10<sup>-9</sup> or better
- Exoplanet images from 0.1 to 1.0 arcsec



WFI

### **Science Objectives**







Figure 3-2: WFIRST-AFTA payload optical block diagram.





# Two Coronagraphs (Occulting Mask)

#### Shape Pupil Coronagraph











#### 10.0% 4e-9 average contrast

• 2e-10 average contrast

4.0%



# Milestones coronagraphs

\*

Milestone #4: HLC in HCIT demonstrates 10–8 raw contrast with narrowband light at 550 nm in a static environment.





# Milestones coronagraphs

12/2015

 Milestone #5: OMC (HLC or SPC) in HCIT demonstrates 10–8 raw contrast with broad band light (10%) at 550 nm in a static environment.



# Milestones coronagraphs

\* **Milestone #9:** OMC (HLC or SPC) in HCIT demonstrates 10–8 raw contrast with broad band light (10%) at 550 nm in a dynamic environment.

03/2017

- WFIRST on-orbit dynamic disturbance and LOWFS architecture
- Pointing correction tests using FSM
- Low order correction tests using DM



### Next Milestones

#### Key milestones for FY 17 concentrate on flight like configurations and operations:

| Milestones                                                                          | Milestone<br>Date | Status             | Comments                                                                      |
|-------------------------------------------------------------------------------------|-------------------|--------------------|-------------------------------------------------------------------------------|
| PISCES commissioning done. Calibration and data pipeline in place                   | 12/31/2016        | Done               | In HCIT2                                                                      |
| Close out Milestone 9.                                                              | 1/31/2017         | Done               | Review slides cleared                                                         |
| HLC wavefront control with <=3 bandpass filters (# engineering filters for flight). | 3/31/2017         | Done               | In HCIT1, 3 bandpass done and has reached ~4e-9                               |
| Demonstrate simultaneous EFC and LOWFS/<br>C operation.                             | 5/31/2017         |                    | In HCIT1                                                                      |
| SPC wavefront control using PISCES IFS. 18% band high contrast.                     | 5/31/2017         | Started            | In HCIT2,                                                                     |
| Demonstrate SPC disc science mask performance with the imager, 6.5-20 I/D.          | 9/30/2017         | Design<br>finished | In HCIT2, design in progress                                                  |
| Low light (low SNR) OMC tests                                                       | 12/31/2017        |                    | In HCIT1, current testbed drift investigation will be important for this task |

# CGI Requirements L2

#### **CGI 2.2**

#### Photometric characterization of known RV exoplanets

WFIRST CGI shall be able to measure the brightness in the **565 nm** filter of an exoplanet at **SNR=5 within 10 hours** of integration time, assuming a scattered light background equal to the solar zodiacal dust at 1 AU, a planet-star flux ratio of **8e-9 at 0.2 arcsec from a V=5 mag** star with a stellar radius of 0.4 milliarcsec.

Rationale:

This 8e-9 contrast is derived from a composite the physical parameters of 47 Uma c and 47 Uma b, 2.85 AU semimajor axis, e=0.05 and a distance of 14 parsecs: assuming a radius of 1.1 R J and an albedo of 0.28 since the 60 degree phase function is 0.50 and the Jupiter albedo at this wavelength is 0.55 (Mayorga et al. 2016).

# CGI Requirements L2

#### CGI 2.3

#### **Detection of new exoplanets**

WFIRST CGI shall be able to detect point sources at a 50% confidence level at a planet-star flux ratio of **6e-10** (TBR) and an angular separation of **0.16 arcsec** (TBR) around a star of **V=4** mag or brighter in an exposure time of **48 hours** or less (TBR).

Rationale:

SuperEarth detection, confidence derivation described in Macintosh, Savransky et al. (???).

# CGI Requirements L2

#### CGI 2.5

#### **High Contrast Spectra**

WFIRST CGI shall be able to measure exoplanet spectra with  $\mathbf{R} = 50$  or greater spectral resolution from 600 nm to 970 nm with bands shown in the CGI Science Filter Table, with a wavelength accuracy of 5 nm or smaller, and achieve an SNR of 10 (TBR) or greater in two bands of 18% (TBR) or greater bandwidth, for a confirmed RV exoplanet (e.g. HD 47 UMa c) at flux ratio of 7e-9 orbiting a star of V = 5 mag at separation of 0.25 arcsec in 24 hours integration time.

Rationale:

Atmospheric retrieval, e.g. Lupu et al 2016 through the broad IFS filters defined in the Science Filter Table.

### **Simulations Performance**

| Raw Contrast v             | s. Working Ar                               | ngle                                        |                                             |
|----------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Working<br>Angle<br>λ , Δλ | 3-4 λ/D                                     | 4-5 λ/D                                     | 5-8 λ/D                                     |
| 565 nm, 10%                | 6x10 <sup>-9</sup><br>(2x10 <sup>-9</sup> ) | 3x10 <sup>-9</sup><br>(1x10 <sup>-9</sup> ) | 2x10 <sup>-9</sup><br>(1x10 <sup>-9</sup> ) |

| Raw Contrast vs. Working Angle |                                 |                                 |                                 |  |  |  |  |
|--------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|
| Working<br>Angle               | 3-4 λ/D                         | 4-5 λ/D                         | 5-8 λ/D                         |  |  |  |  |
| Λ,ΔΛ 🔨                         |                                 |                                 |                                 |  |  |  |  |
| 660 nm                         | 9x10 <sup>-9</sup> for 10% BW   | 7x10 <sup>-9</sup> for 10% BW   | 5x10 <sup>-9</sup> for 10% BW   |  |  |  |  |
| 000 mm                         | (6x10 <sup>-9</sup> for 18% BW) | (4x10 <sup>-9</sup> for 18% BW) | (4x10 <sup>-9</sup> for 18% BW) |  |  |  |  |
| 770                            | 1x10 <sup>-8</sup> for 10% BW)  | 8x10 <sup>-9</sup> for 10% BW)  | 5x10 <sup>-9</sup> for 10% BW)  |  |  |  |  |
| //U nm                         | (7x10 <sup>-9</sup> for 18% BW) | (5x10 <sup>-9</sup> for 18% BW) | (4x10 <sup>-9</sup> for 18% BW) |  |  |  |  |

# **Yields Imaging**

Calculations by B. Nemanti

|     | Mode            |      | CG           | λ, nm            | $\Delta\lambda$ , nm | SNR           | f_pp        | Mission Life | time, hrs       |            | analysti   | cal)       |
|-----|-----------------|------|--------------|------------------|----------------------|---------------|-------------|--------------|-----------------|------------|------------|------------|
| h   | mag Goal 2.2    | G2.  | 2Fit565      | 565              | 56.5                 | 5             | 10%         | 12%          | 50              |            |            |            |
|     |                 |      |              |                  |                      |               |             |              |                 | _          | _          |            |
|     | Threshold       | 0%   | Time Margi   | n Threshold      |                      |               |             | 400          | hrs max time /  | planet     | ]          |            |
|     | Planets         | 17   | No. of plane | ets above the    | e time margin tl     | hreshold      | ]           | 230          | hrs total integ | time       | ]          |            |
|     |                 |      |              |                  |                      |               | -           |              |                 |            | -          |            |
| No. | Pl. Name        | Vmag | Sep (mas)    | WA $(\lambda/D)$ | Albedo (65)          | Fl Ratio, ppb | Time Margin | t (SNR), hrs | vr(det) e/s     | vr(pl) e/s | vr(sp) e/s | vr(zo) e/s |
| 35  | Fid1: 47 UMa bc | 5.0  | 208          | 4.2              | 0.2                  | 9.30          | 99%         | 0.3          | 0.0             | 0.0        | 3.1E-03    | 0.0        |
| 1   | beta Gem b      | 1.2  | 170          | 3.5              | 10%                  | 9.85          | 100%        | 0.01         | 6.5E-04         | 1.16E+00   | 8.14E-02   | 8.95E-02   |
| 2   | gamma Cep b     | 3.2  | 140          | 2.9              | 5%                   | 4.15          | 93%         | 3.5          | 6.5E-04         | 2.72E-02   | 3.69E-02   | 3.93E-04   |
| 5   | upsilon And d   | 4.1  | 187          | 3.8              | 11%                  | 4.99          | 99%         | 0.3          | 6.5E-04         | 4.60E-02   | 5.03E-03   | 7.87E-03   |
| 11  | HD 114613 b     | 4.9  | 257          | 5.2              | 20%                  | 2.54          | 98%         | 1.2          | 6.5E-04         | 1.45E-02   | 2.62E-03   | 4.49E-03   |
| 7   | 47 UMa b        | 5.0  | 149          | 3.0              | 16%                  | 11.21         | 99%         | 0.7          | 6.5E-04         | 2.43E-02   | 3.92E-03   | 7.25E-03   |
| 9   | 47 UMa c        | 5.0  | 254          | 5.2              | 28%                  | 7.73          | 99%         | 0.3          | 6.5E-04         | 3.75E-02   | 2.22E-03   | 4.32E-03   |
| 14  | mu Ara e        | 5.1  | 344          | 7.0              | 28%                  | 3.14          | 97%         | 1.3          | 6.5E-04         | 1.39E-02   | 2.70E-03   | 3.83E-03   |
| 10  | HD 39091 b      | 5.7  | 183          | 3.7              | 5%                   | 1.20          | 67%         | 16.5         | 6.5E-04         | 2.66E-03   | 1.21E-03   | 4.43E-03   |
| 31  | HD 142 c        | 5.7  | 330          | 6.7              | 19%                  | 1.19          | 74%         | 13.1         | 6.5E-04         | 3.09E-03   | 1.71E-03   | 3.64E-03   |
| 4   | HD 192310 c     | 5.7  | 133          | 2.7              | 14%                  | 5.24          | 67%         | 16.6         | 6.5E-04         | 3.37E-03   | 3.63E-03   | 9.57E-05   |
| 13  | Gliese 777 b    | 5.7  | 251          | 5.1              | 28%                  | 5.67          | 98%         | 1.1          | 6.5E-04         | 1.42E-02   | 1.21E-03   | 3.85E-03   |
| 33  | psi Dra B b     | 5.8  | 201          | 4.1              | 29%                  | 4.73          | 96%         | 2.0          | 6.5E-04         | 9.61E-03   | 1.32E-03   | 4.15E-03   |
| 17  | 55 Cnc d        | 6.0  | 381          | 7.7              | 28%                  | 2.75          | 92%         | 4.2          | 6.5E-04         | 5.57E-03   | 1.26E-03   | 3.44E-03   |
| 19  | HD 217107 c     | 6.2  | 269          | 5.5              | 28%                  | 2.99          | 91%         | 4.7          | 6.5E-04         | 5.09E-03   | 8.66E-04   | 3.64E-03   |
| 22  | HD 134987 c     | 6.5  | 222          | 4.5              | 23%                  | 2.24          | 74%         | 12.9         | 6.5E-04         | 2.75E-03   | 7.20E-04   | 3.72E-03   |
| 15  | 14 Her b        | 6.6  | 167          | 3.4              | 20%                  | 6.83          | 91%         | 4.4          | 6.5E-04         | 5.28E-03   | 5.33E-04   | 3.91E-03   |
| 20  | HD 154345 b     | 6.8  | 227          | 4.6              | 24%                  | 4.47          | 88%         | 6.2          | 6.5E-04         | 4.20E-03   | 5.52E-04   | 3.62E-03   |
| 23  | HD 87883 b      | 7.6  | 196          | 4.0              | 9%                   | 2.25          | -100%       | 83.0         | 6.5E-04         | 9.05E-04   | 2.62E-04   | 3.49E-03   |
| 29  | GJ 832 b        | 8.7  | 381          | 7.7              | 22%                  | 6.17          | -100%       | 58.4         | 6.5E-04         | 1.04E-03   | 1.05E-04   | 3.29E-03   |

9.30

99%

0.3

6.5E-04

4.22E-02

3.08E-03

4.99E-03

35

Fid1: 47 UMa bc

5.0

208

4.2

22%

# **Yields Spectroscopy**

Calculations by B. Nemanti (analystical)

|     | Mode            |      | CG           | λ, nm            | $\Delta\lambda$ , nm | SNR           | f_pp        | Mission Life | time, hrs       |            | (analysti   | cal)       |
|-----|-----------------|------|--------------|------------------|----------------------|---------------|-------------|--------------|-----------------|------------|-------------|------------|
| 1   | FS1 Goal 2.5    | G2.  | 5Fit660      | 660              | 118.8                | 10            | 10%         | 12%          | 250             |            | (antary 5th |            |
|     |                 |      |              |                  |                      |               |             |              |                 | -          |             |            |
|     | Threshold       | 0%   | Time Margi   | n Threshold      |                      |               |             | 400          | hrs max time /  | planet     | ]           |            |
|     | Planets         | 4    | No. of plane | ets above the    | e time margin th     | nreshold      |             | 443          | hrs total integ | time       | ]           |            |
|     |                 |      |              |                  |                      |               | -           |              |                 |            | -           |            |
| No. | Pl. Name        | Vmag | Sep (mas)    | WA $(\lambda/D)$ | Albedo (65)          | Fl Ratio, ppb | Time Margin | t (SNR), hrs | vr(det) e/s     | vr(pl) e/s | vr(sp) e/s  | vr(zo) e/s |
| 35  | Fid1: 47 UMa bc | 5.0  | 208          | 3.6              | 0.2                  | 9.30          | 95%         | 12.7         | 0.0             | 0.0        | 2.2E-03     | 0.0        |
| 1   | beta Gem b      | 1.2  | 170          | 3.0              | 10%                  | 9.85          | -100%       | -1.00        | 2.1E-03         | -1.00E+00  | -1.00E+00   | -1.00E+00  |
| 2   | gamma Cep b     | 3.2  | 140          | 2.4              | 5%                   | 4.15          | -100%       | -1.0         | 2.1E-03         | -1.00E+00  | -1.00E+00   | -1.00E+00  |
| 5   | upsilon And d   | 4.1  | 187          | 3.3              | 11%                  | 4.99          | -100%       | 895.4        | 2.1E-03         | 8.03E-03   | 5.98E-03    | 1.81E-03   |
| 11  | HD 114613 b     | 4.9  | 257          | 4.5              | 20%                  | 2.54          | 32%         | 170.5        | 2.1E-03         | 2.91E-03   | 1.78E-03    | 1.61E-03   |
| 7   | 47 UMa b        | 5.0  | 149          | 2.6              | 16%                  | 11.21         | -100%       | -1.0         | 2.1E-03         | -1,00E+00  | -1.00E+00   | -1.00E+00  |
| 9   | 47 UMa c        | 5.0  | 254          | 4.4              | 28%                  | 7.73          | 95%         | 12.2         | 2.1E-03         | 7.52E-03   | 1.51E-03    | 1.55E-03   |
| 14  | mu Ara e        | 5.1  | 344          | 6.0              | 28%                  | 3.14          | 19%         | 202.8        | 2.1E-03         | 2.81E-03   | 1.76E-03    | 1.42E-03   |
| 10  | HD 39091 b      | 5.7  | 183          | 3.2              | 5%                   | 1.20          | -100%       | -51.4        | 2.1E-03         | 3.98E-04   | 1.67E-03    | 8.50E-04   |
| 31  | HD 142 c        | 5.7  | 330          | 5.7              | 19%                  | 1.19          | -100%       | -165.0       | 2.1E-03         | 6.35E-04   | 1.03E-03    | 1.37E-03   |
| 4   | HD 192310 c     | 5.7  | 133          | 2.3              | 14%                  | 5.24          | -100%       | -1.0         | 2.1E-03         | -1.00E+00  | -1.00E+00   | -1.00E+00  |
| 13  | Gliese 777 b    | 5.7  | 251          | 4.4              | 28%                  | 5.67          | 77%         | 57.7         | 2.1E-03         | 2.81E-03   | 8.74E-04    | 1.32E-03   |
| 33  | psi Dra B b     | 5.8  | 201          | 3.5              | 29%                  | 4.73          | -100%       | 3516.5       | 2.1E-03         | 1.78E-03   | 1.26E-03    | 1.10E-03   |
| 17  | 55 Cnc d        | 6.0  | 444          | 7.7              | 28%                  | 2.75          | -100%       | -591.8       | 2.1E-03         | 1.01E-03   | 8.75E-04    | 1.10E-03   |
| 19  | HD 217107 c     | 6.2  | 269          | 4.7              | 28%                  | 2.99          | -100%       | 508.3        | 2.1E-03         | 1.04E-03   | 5.29E-04    | 1.33E-03   |
| 22  | HD 134987 c     | 6.5  | 222          | 3.9              | 23%                  | 2.24          | -100%       | -802.0       | 2.1E-03         | 5.18E-04   | 5.32E-04    | 1.13E-03   |
| 15  | 14 Her b        | 6.6  | 167          | 2.9              | 20%                  | 6.83          | -100%       | -1.0         | 2.1E-03         | -1.00E+00  | -1.00E+00   | -1.00E+00  |
| 20  | HD 154345 b     | 6.8  | 227          | 3.9              | 24%                  | 4.47          | -100%       | 814.9        | 2.1E-03         | 7.91E-04   | 4.07E-04    | 1.10E-03   |
| 23  | HD 87883 b      | 7.6  | 196          | 3.4              | 9%                   | 2.25          | -100%       | -1953.5      | 2.1E-03         | 1.67E-04   | 2.50E-04    | 9.27E-04   |
| 29  | GJ 832 b        | 8.7  | 402          | 7.0              | 22%                  | 6.17          | -100%       | 6737.0       | 2.1E-03         | 1.99E-04   | 7.03E-05    | 1.13E-03   |
| 35  | Fid1: 47 UMa bc | 5.0  | 208          | 3.6              | 22%                  | 9.30          | 95%         | 12.7         | 2.1E-03         | 7.89E-03   | 2.19E-03    | 1.43E-03   |

### Observing Scenario 5 (OS5) by J. Krist

- thermal models / wavefront maps (GSFC)
- Propagation (PROPER) includes LOWFS/C + DM correction (7.6pm resolution) => speckle field
- \* Hybrid Lyot Coronagraph (HLC)
  - 509-591 nm bandpass (15%)
  - single polarization
  - Two 48x48 deformable mirrors (one at pupil, other 1 m away)
  - $r = 3 9 \lambda/D (0.14'' 0.43'')$  dark hole field size
  - dark hole computed using EFC
- 25 Ksec on 61 UMa to reach steady state
- 600 sec slew to  $\beta$  UMa (V = 2.4, A1IV)
- 30 Ksec on  $\beta$  UMa at roll +13°, including 10 Ksec settle
- 600 sec slew to 47 UMa (V = 5.0, G1V)
- 50 Ksec on 47 UMa at roll +13°, including 10 Ksec settle
- 100 sec to roll 26° around 47 UMa
- 50 Ksec on 47 UMa at roll -13°, including 10 Ksec settle

SPIE papers Krist et al. 2015 Krist et al. 2016



#### Simulations by M. Ygouf



Figure 5: **Post-processed data for both RDI and ADI observing scenarios.** Comparison of [left] RDI and [right] ADI reductions of the long exposure image of 47 UMa for the noiseless and noisy data sets, without and with LOWFC. Reductions have been performed with the classical PSF subtraction technique. The ADI strategy enables a slightly better speckle subtraction than the RDI strategy, helping to better discriminate between planets and residual

|                               |                                                                         | DI         | ADI                                                                       |            |                                                                           |                                            |                                                                           |              |
|-------------------------------|-------------------------------------------------------------------------|------------|---------------------------------------------------------------------------|------------|---------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|--------------|
|                               | Noiseless                                                               |            | Noisy                                                                     |            | Noiseless                                                                 |                                            | Noisy                                                                     |              |
|                               | Contrast                                                                | Gain       | Contrast                                                                  | Gain       | Contrast                                                                  | Gain                                       | Contrast                                                                  | Gain         |
| Without LOWFC<br>LOWFC random | $\begin{array}{c} 2.3\times 10^{-10} \\ 1.7\times 10^{-10} \end{array}$ | 5.0<br>6.9 | $\begin{array}{c} 8.0 \times 10^{-10} \\ 7.3 \times 10^{-10} \end{array}$ | 1.7<br>1.8 | $\begin{array}{c} 7.8 \times 10^{-11} \\ 8.6 \times 10^{-11} \end{array}$ | $\begin{array}{c} 14.8\\ 13.1 \end{array}$ | $\begin{array}{c} 6.6 \times 10^{-10} \\ 6.4 \times 10^{-10} \end{array}$ | $2.0 \\ 2.1$ |

Calculations by B. Macintosh



### Data Challenge

**Community Data Challenge #1**: Test spectral retrieval using simple synthetic planet spectra. This exercise will help reveal model-dependent interpretations of noisy data.

**Community Data Challenge #2**: Test post-processing and source extraction techniques with spectral image cubes containing only a star and planets, processed with a simple instrument model. This exercise is intended as practice to begin developing the techniques.

**Community Data Challenge #3**: Add astrophysical background sources to the data cubes, processed with the project's WFIRST instrument model.

**Community Data Challenge #4**: Add interplanetary dust for a complete exercise in harvesting scientific results from realistic simulated data.



## European propositions

#### LAM developed a dedicated optical fabrication method, based on active polishing

Suitable to TORIC mirrors, OFF-AXIS PARABOLA (<450 mm  $\emptyset$ ) Excellent results : LoF <**10 – 20 nm rms** (including form error)

MiF / HiF ~ **1- 2nm rms** Roughness ~ **2 – 5 Å rms** 





|                       | PAR-034 |        | TI    | RD-07     | TRD-O8 |            |  |
|-----------------------|---------|--------|-------|-----------|--------|------------|--|
|                       | Spec    | Result | Spec  | Result    | Spec   | Result     |  |
| Clear aperture [mm]   | 18.0    | 18.0   | 21.4  | 21.4      | 21.4   | 21.4       |  |
| Incidence angle (deg) |         |        | 5.5   |           | 9.44   |            |  |
| Average Roc [mm]      | 400.0   | 400.0  | 430.0 | 430.0+/-1 | 1446.5 | 1446.5+/-1 |  |
| Astm3 coef RMS [nm]   | 471.0   | 460.0  | 750.0 | 751.0     | 75.0   | 76.0       |  |
| Coma3 coef RMS [nm]   | 41.0    | 47.0   |       |           |        |            |  |
| LoF WFE [nm]          | 15.8    | 13.0   | 15.8  | 7.0       | 15.8   | 6.4        |  |
| MiF WFE [nm]          |         | 1.5    |       | 2.0       |        | 1.5        |  |
| HiF WFE [nm]          |         | 1.3    |       | 3.2       |        | 1.6        |  |
| Roughness RMS [nm]    | 0.5     | 0.4    | 0.5   | 0.5       | 0.5    | 0.4        |  |

proposal supported by CNESstrong interests from CGI

# European propositions

#### Needs: **3** detectors in CGI

- Imager
- IFS
- LOWFS

#### Picture of CCD201-20



developed by Centre for Electronic Imaging at the Open University (CEI-OU) and the Mullard Space Science Laboratory, University College London (MSSL-UCL)

Table 5. Specifications of the CCD201-20 EMCCD, from e2v.

| Parameter                      | Specification                               |
|--------------------------------|---------------------------------------------|
| Sensor family                  | EMCCD                                       |
| Variant                        | BI*, 2-Phase                                |
| Active pixels (image)          | $1024 (H) \times 1024 (V)$                  |
| Frame Transfer (store)         | $1056 (H) \times 1037 (V)$                  |
| Image area                     | $13.3 \text{ mm} \times 13.3 \text{ mm}$    |
| Pixel pitch                    | $13 \ \mu \mathrm{m}$                       |
| Active area CHP <sup>†</sup>   | $80,000 e^{-} pix^{-1}$                     |
| Gain register CHP <sup>†</sup> | $730,000 e^{-} pix^{-1}$                    |
| Fill factor                    | 100%                                        |
| # O/P amplifiers               | $1 \times \text{Conv.}, 1 \times \text{EM}$ |
| Multiplication elements        | 604                                         |
| Dark reference columns         | 32                                          |
| Overscan elements              | 16                                          |

 $*BI = Back-Illuminated; ^{\dagger}CHP = charge handling capacity.$ 

**Milestone #7:** DARK: 7e-4 e-/pix/s - RON =1.7e-6 e-/pix/frame - exposure to radiation (BOL / EOL) twice better than specification



 contribute into estimating science yields exoplanets/disks with the SPICES simulator (in collaboration with SITs)

## European propositions

### larger throughput <=> other coronagraphs



### More informations

- https://wfirst.gsfc.nasa.gov/library.html
- https://wfirst.ipac.caltech.edu