Discovery Space for SKA

Françoise Combes Observatoire de Paris 23 November 2018

aboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

SKA: solution to main questions in cosmology

Matter in the Universe Dark matter/visible matter vs z

Dark energy: (BAO, WL, RSD..) Is it varying with time?

How is the Universe re-ionized? End of the dark age: cosmic dawn, EoR

How do baryons assemble into the large-scale structures? Galaxy formation and evolution Environment: groups and galaxy clusters

Strong-gravity with pulsars and black holes

BAO z=0.8-2.2 from quasars e-BOSS (last release DR14 SDSS-IV)

147 000 quasars over 2040 °²

Compatible with Λ CDM $\Omega_{\rm m} = 0.3, \, \Omega_{\Lambda} = 0.7$

The QSO are very good tracors!

Ata et al 2017

Current constraints: Planck + others

Survey in Ly α absorption

Sound horizon

150Mpc

Absorption of Ly α line at z=2.3 Delubac et al 2014 Red dots versus QSO simul (grey) H(z)/(1+z) r_d

The cosmic distance ladder

Cepheids, RR Lyrae, Tully-Fischer, HII regions, SN-Ia,

Spitzer 3.6 microns (blue), 4.5 microns (green), and 8.0 microns (red)

H_0 = 67.8+0.9 (Planck coll 2016) The H₀ challenge

Discrepancy at 3.7σ

 $H_0 = 73.48 + 1.66$ (Riess et al 2018)

Overlap of distance ladders

SN-Ia standard candels calibrated at z=0BAO: standard ruler, calibrated on sound Horizon at z~1000 **Inverse ladder**?

SN1a

0.1

anchor

0.01

Ho

Cuesta et al 2015

Precise and accurate measure of H0

SKA will measure many masers around AGN at various z

Ezquiaga 2018

HI surveys for BAO with SKA-1

All sky survey: 4 10⁶ gal z=0.2 3π sr Wide-field survey 2 10⁶ gal z=0.6 5000 deg² Deep-field survey 4 10⁵ gal z=0.8 50 deg²

More competitive: HI intensity mapping $30\ 000\ deg^2$ up to z=3 Deep and wide, large volumes, ~Euclid

SKA2 will help to provide pure sample 1 billion HI galaxies in total

Weak shear 10 billions galaxies in continuum

Radial and transverse BAO

IM: HI Intensity mapping Gal: HI galaxy surveys

B1 low-frequency band B2 high-frequency band

HIM 30 000 °2 up to z~3, Radio 30 000 °2 up to z~6

10⁹ objects

Maartens et al 2015

Comparison of Volume covered

HI gal survey vs intensity mapping

First results HI intensity mapping (GBT)

Even for synchtron smooth backgrounds, the response of the instrument is more complex

```
Switzer et al 2013
```

BAO with SKA1 Intensity mapping

RSD Redshift space distortions

Distortions due to peculiar velocities on the line of sight

the line of sight (fingers of god!) Kaiser effect in clusters Systematic infall More than random allows to determine $\beta = \Omega_m^{0.6}/b$ bias $\delta_{galaxies} = b (\delta_{mass})$ bias $\delta_{\text{galaxies}} = b (\delta_{\text{mass}})$ and σ_{gal}

RSD: Redshift Space Distortions

Mohammad et al 2018

RSD constraints on DE and y

 γ =0.55 RG Standard model

Raccanelli et al. 2015

Dark energy

Modified gravity

Weak Lensing & LSS in radio

Continuum surveys with SKA1

In 2yrs achieve 2 μ Jy rms would provide \approx 4 galaxies arcmin² (>10 σ)

PSF is excellent quality circular Gaussian from about 0.6 - 100" With almost uniform sky coverage of 3π sr

→ Total of **0.5 billion radio sources, for All sky survey** for weak lensing and Integrated Sachs Wolfe (WL, ISW)

For wide-field (5000 deg2) **2** μ Jy rms \approx 6 galaxies arcmin² (>10 σ) For deep-field (50deg2) **0.1** μ Jy rms, \approx 20 galaxies arcmin² (>10 σ)

Present status of radio surveys

HDF-N 5 x 5 arcmin area to I ~29thmagnitude

Fomalont et al., ApJ 475, L5 (1997)

6 sources detected by VLA with $S_{8.4} > 12 \mu Jy$ (50 hour observation)

Deep radio sky 10' size, @ 1.4GHz

1µJy top 100nJy bottom Left and Right Cosmic variance

FRI: green, double FRII: red, double

Beamed FRI: green dot Beamed FRII: red dot Star-forming: disk

Jackson 2004

Up to z~2 with SKA2

Staveley-Smith & Oosterloo 2015

All sky survey of Faraday rotation (n_e, B) : to measure inter-galactic B together with B inside galaxies

Magneto-genesis: Inflation, phase transitions in the early Universe Then **batteries to** amplify B. Normally B frozen into matter, should dilute away in the expansion. When structures collapse, B is amplified

Detection of inter-galactic B is s strong goal (e.g. cool core clusters)

Pulsars: Time of Arrival (TOA)

Physics of accreting WD, NS and BH: physics of condensed matter with strong magnetic B. High sensitivity

Timing of pulsars

MSPs, J0437-4715, one of the best measured has now $P= 5.7574518589879ms \pm 1$ in the last digit (13th) This digit increases by 1 every 1/2h

Gravitational waves

PTA: pulsar timing arrays. Monitoring several MSP GW have few nanoHz frequencies ($\lambda \sim \text{light-yr} = 10^4 \text{ billion km}$) Correlation between the TOA of several pulsars Will trace space streching

→GW $\lambda >> \lambda$ (LIGO-Virgo)

GW coming from merger of black holes, if nearby Will be seen in other λ

Or noise due to the ensemble of mergers (stochastic background)

A bright future with the radio observatories: SKA and precursors

Nbeams= (Dtot/d)² =4000 or To/s data

Cannot record, but Process on-time

Cannot re-analyse → Re-observe

Tests of General Relativity

Gravity in strong fields: PSR-Neutron star, PSR-black hole Was Einstein right?, Cosmic Censorship Conjecture (i.e. Naked singularities), No-hair theorem

Double pulsars timing: 0.05% test of general relativity in "strong"-field (gravitational delay)

Scien

MAAAS

Kramer et al 2006, Science PSR J0737-3039A/B

Outer Orbit P_{orb}=327days M_{WD} = 0.41M_{Sun}

PSR J0337+1715 Triple System

Inner Orbit P_{orb}=1.6days M_{PSR} = 1.44M_{Sun} M_{WD} = 0.20M_{Sun}

Pulsar 16 lt-sec

"Young, hot" White Dwarf

Magnified 15x

39.2°

Orbital inclinations

472 It-sec /

Center of Mass / 118 It-sec

"Cool, old" White Dwarf

Figure credit: Jason Hessels

Ransom et al 2014

Precise data from the triple system

Allows to test the **Strong Equivalence Principle** → verified in strong gravity also

Other scalar-tensor theories GR: $\alpha 0 = \beta 0 = 0$

Freire et al 2012 Antoniadis et al 2013

Pulsars with SKA

J Cordes, 2004

MW: 30000 PSR, 10⁴ MSP ~20,000 potentially visible normal pulsars, MSPs and RRATs = **Rotating Radio Transients** (*irregular, nulling, might be more abundant?*)

SKA1 has the potential to find a large fraction (~50%?) of these pulsars

SKA: 1.4 GHz/400 MHz/1024 T/G = 0.25 Jy 600 s PSR: $(\alpha,\beta,\gamma) = (-1.5,0.5,28.0) \in -0.001 \mod = 2 n = 2.5 \tau_{x} = 3.$ Myr t<50 Myr

Cradle for Life with SKA

ALMA - HLTau

Pre-biotic molecules

FRB: Fast Radio Bursts

With SKA-MID, 100 FRB/yr with precise localisation Detections by ASKAP, CHIME → missing baryons?

Frequency (GHz)

Lorimer et al 2007 Large DM→ far away Powerful objects In external galaxies 10µs variability → Compact objects Strong B → magnetars Keane 2018

FRB in the transient diagram, $L-v\Delta t$

Could be use to trace the nature of Universe \rightarrow tomography

RRL at high redshift with LOFAR

3C190 z=1.2 RRL z=1.12, ~10000 km/s offset HST + Merlin 1.6 GHz

Weak lines to probe cold, largely atomic gas and warm, ionised gas (n, T) Dwarf galaxy or AGN-driven outflow?

Cosmology: what is dark matter and dark energy? Tools with high precision, BAO, RSD, HI in galaxies H_0 , masers

EoR: how the first galaxies were born

Pulsars: test new physics, gravity in strong field Gravitational waves

Cradle for life: protoplanetary disks Pre-biotic Molecules

